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Abstract

We consider the calibration of parameters in physical models described by partial differential equations. This task is

formulated as a constrained optimization problem with a cost functional of least squares type using information

obtained from measurements. An important issue in the numerical solution of this type of problem is the control of

the errors introduced, first, by discretization of the equations describing the physical model, and second, by measure-

ment errors or other perturbations.

Our strategy is as follows: we suppose that the user defines an interest functional I, which might depend on both

the state variable and the parameters and which represents the goal of the computation. First, we propose an a pos-

teriori error estimator which measures the error with respect to this functional. This error estimator is used in an

adaptive algorithm to construct economic meshes by local mesh refinement. The proposed estimator requires the

solution of an auxiliary linear equation. Second, we address the question of sensitivity. Applying similar techniques

as before, we derive quantities which describe the influence of small changes in the measurements on the value of the

interest functional. These numbers, which we call relative condition numbers, give additional information on the

problem under consideration. They can be computed by means of the solution of the auxiliary problem determined

before.

Finally, we demonstrate our approach at hand of a parameter calibration problem for a model flow problem.
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1. Introduction

A physical model described by a system of partial differential equations often involves unknown param-

eters, which cannot be measured directly, or whose measurement would require too much effort. This sit-

uation appears for example in the modeling of material properties or reaction velocities, or in the
formulation of boundary conditions. In such situations, the estimation of unknown parameters is indis-

pensable for successful simulation and optimization of the corresponding physical processes. The informa-

tion required for parameter identification is usually obtained by observations of measurable quantities, like

forces, fluxes, point values of pressure, velocity or concentration.

We distinguish two classes of such problems: parameter identification and model calibration problems. If

the determination of the values of some unknown parameters is the primary goal of the computation, the

problem is called parameter identification problem. If one is primarily interested in the computation of dif-

ferent physical quantities (quantity of interest) such as drag or lift coefficients, which depend only implicitly
on the unknown parameters, we call this problem a model calibration problem. This distinction is important

for the evaluation of the quality of a simulation. For example, one may think of the case, where the quan-

tity of interest is not very sensitive with respect to some of the unknown parameters. Then, there is probably

no need to estimate this parameter with high accuracy. In this paper, we wish to give a rigorous formulation

of this idea.

For the formulation and numerical solution of such problems, one has the following two main ingredi-

ents: First, one needs measurements, and second, one has to discretize the physical model in order to obtain

a finite-dimensional system. Both procedures introduce errors: On the one hand, we have measurement
errors and on the other hand discretization errors. Both types of errors lead to inexact computation of

the quantity of interest. The aim of this paper is to analyze the dependency of the computed quantity of

interest on both, the discretization and the measurement errors. We first derive an a posteriori error esti-

mator, which aims to control the error in the quantity of interest due to discretization. This error estimator

is used in an adaptive mesh refinement algorithm, producing economical meshes with respect to the quan-

tity of interest. Next, using similar techniques, we describe the computation of sensitivities of the quantity

of interest with respect to the measurements, allowing to analyze the influence of the measurement errors on

the quantity of interest. This is important for estimating the quality of the computed approximation and
should be helpful for designing new experiments/measurements. We also show that the computation of

these sensitivities requires nearly no additional numerical effort, if an adaptive mesh refinement algorithm

based on our a posteriori error estimator is used.

In this paper, we consider the problem of parameter calibration formulated as follows: The state variable

u, which represents the vector of all physical unknowns, is determined in an appropriate Hilbert space V by

a partial differential equation (state equation) written in weak form:
aðq; uÞð/Þ ¼ f ð/Þ 8/ 2 V : ð1Þ
Here q denotes the unknown parameters in a Hilbert space Q. The function a(Æ, Æ)(Æ) is defined on the Hilbert

space Q · V · V and is linear with respect to arguments in the second pair of parenthesis. The partial deriv-

atives of the form a(Æ, Æ)(Æ) are denoted by a 0
u(Æ, Æ)(Æ, Æ), a 0

q(Æ, Æ)(Æ, Æ), etc.
Further, we have an observation operator C : V ! Z, which maps the state variable u to the Hilbert

space of measurements Z. The form a and the observation C are assumed to be three times continuously

differentiable. We denote by ÆÆ, ÆæZ the scalar product of Z and by iÆiZ the corresponding norm. Similar nota-

tion is used for the scalar product and norm in the space Q.
The values of the parameters are estimated from a given set of measurements �C 2 Z using a least

squares approach, such that we obtain the constrained minimization problem with cost functional

J : Q� V ! R:
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Minimize Jðq; uÞ :¼ a
2
kq� �qk2Q þ 1

2
kCðuÞ � �Ck2Z ð2Þ
under the constraint (1). The cost functional defined in (2) is the sum of the squared norm of the so-called
least squares residual defined by
RLSðuÞ :¼ �C � CðuÞ; ð3Þ

and a regularization term involving prescribed a P 0 and �q 2 Q.

The state equation is discretized by the Galerkin method based on a finite-dimensional space Vh � V.

This space is constructed by finite element functions on a mesh Th. See Section 5 for an example in the

context of a two-dimensional flow problem.

The discretized optimization problem for the discrete state uh 2 Vh and parameter qh 2 Q is formulated

as follows:
Minimize Jðqh; uhÞ ð4Þ

under the constraint
aðqh; uhÞð/hÞ ¼ f ð/hÞ 8/h 2 V h: ð5Þ

The quantity of interest is described by a user-specified interest functional I : Q� V ! R. The proposed a

posteriori error estimator controls the error
Iðq; uÞ � Iðqh; uhÞ

and is used in an adaptive algorithm for successive improvement of the accuracy by an appropriate local

mesh refinement, see Section 3 for details.

In order to analyze the dependency on measurements, we will introduce a functional î : Z ! R, which

maps given measurements �C to the value of the quantity of interest for the solution of the corresponding

problem (1) and (2). The aim of our sensitivity analysis is the computation of relative condition numbers ji
describing the propagation of relative errors from measurements.

The outline of the paper is as follows: In Section 2, we describe a typical optimization loop for the

solution of the problem under consideration. In Section 3, we derive our a posteriori error estimator.

Section 4 is devoted to sensitivity analysis. Thereafter, in Section 5, we illustrate our approach at

hand of a flow problem. In Appendix A, we give the proofs for the propositions formulated in the

paper.

For simplicity and clarity of presentation, we make the following assumptions. We suppose that both the

control space Q and the measurement space Z are finite dimensional,
dimQ ¼ nQ; dimZ ¼ nZ ; nZ P nQ:
In addition we suppose that the parameter space of the discrete problem is not reduced, i.e., Qh = Q. The

generalization of techniques to the case of infinite dimensional control space Q with Qh � Q is straightfor-

ward. Further, we do not incorporate inequality constraints on the parameters. The generalization to this

case is the subject of forthcoming work.

The new contributions of this paper are the combination of local mesh refinement with sensitivity

analysis and a generalization of a posteriori error estimators established before. Sensitivity analysis of
parameter-dependent optimization problems is an active area of research, see in the context of parabolic

partial differential equations, e.g., [12], or [9]. Concerning a posteriori error estimation, we generalize pre-

vious work; in [2] we have chosen as the interest functional the cost functional itself, and in [6] we have

considered interest functionals depending on the parameters only, along with variants of the optimization

algorithm. Here, we allow the interest functional to depend both on the parameters and on the state

variable.
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2. Optimization algorithm

In this section, we reformulate the problem under consideration as an unconstrained optimization prob-

lem and shortly discuss optimization algorithms for its solution.

Throughout the paper we assume that problem (1) and (2) admits a (locally) unique solution. Moreover,
we assume the existence of a twice continuously differentiable solution operator S : Q0 ! V in a neighbor-

hood Q0 � Q of the solution to this problem. For all q 2 Q0, we have:
aðq; SðqÞÞð/Þ ¼ ðf ;/Þ 8/ 2 V : ð6Þ
The existence of the solution operator S may be ensured by virtue of the implicit function theorem under

the usual regularity assumption on a0uðq; uÞ in Q0. Using this solution operator S, we define the reduced

observation operator c : Q0 ! Z by
cðqÞ :¼ CðSðqÞÞ ð7Þ
in order to reformulate the problem under consideration as an unconstrained optimization problem with

the reduced cost functional j : Q ! R:
Minimize jðqÞ :¼ 1

2
kcðqÞ � �Ck2Z þ

a
2
kq� �qk2Q; q 2 Q: ð8Þ
Denoting by G = c 0(q), the Jacobian matrix of the reduced observation operator c, and by G* the adjoint

operator of G, the first-order necessary condition for (8) reads:
G�cðqÞ þ aq ¼ G� �C þ a�q: ð9Þ

In the following proposition, we give a representation of the Jacobian G.

Proposition 1. Let the reduced observation operator c be defined as in (7). Then its partial derivatives can be

computed as follows:
oci
oqj

ðqÞ ¼ Gij ¼ C0
iðuÞðwjÞ; i ¼ 1; . . . ; nZ ; j ¼ 1; . . . ; nQ;
with u = S(q), Ci and ci denote the components of the observation and the reduced observation operators,

respectively. The tangent solution wj 2 V is determined by
a0uðq; uÞðwj;/Þ ¼ �a0qðq; uÞðej;/Þ 8/ 2 V ; ð10Þ
where ej denotes the jth vector of the an orthonormal basis of Q.

Proof. The proof is given in Appendix A. h

In the sequel, we will also need the second derivative of the reduced cost functional. We have
r2jðqÞ ¼ aI þ G�GþM ; ð11Þ
where the matrix M 2 RnQ�nQ is defined by
M :¼ �
XnZ
i¼1

c00i ðqÞRLS
i : ð12Þ
Here, RLS
i 2 R denotes the ith component of the least-squares residual RLS(u) with u = S(q).
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We collect the necessary information for computation of M in the next proposition.

Proposition 2. The entries Mjk of the matrix M defined in (12) can be computed by
Mjk ¼ � a00uuðq; uÞðwj;wk; zÞ � a00uqðq; uÞðwk; ej; zÞ � a00qqðq; uÞðej; ek; zÞ � a00uqðq; uÞðwj; ek; zÞ
� hC00ðuÞðwj;wkÞ;RLSðuÞiZ ;
where u = S(q). Further, wj 2 V is defined in (10) and z 2 V is the solution of the following adjoint equation:
a0uðq; uÞð/; zÞ ¼ �hRLSðuÞ;C0ðuÞð/ÞiZ 8/ 2 V : ð13Þ
Proof. The proof is given in Appendix A. h

The unconstrained optimization problem (8) is solved iteratively. Starting with an initial guess q0, the

next parameter is obtained by qk + 1 = qk + dq, where the update dq is the solution of the problem:
Hkdq ¼ G�
krk þ að�q� qkÞ; ð14Þ
where
rk :¼ C � cðqkÞ; Gk :¼ c0ðqkÞ;

and Hk is an approximation of the Hessian $2j(qk) of the reduced cost functional j. The choice of the matrix
Hk 2 RnQ�nQ leads to different variants of the optimization algorithm. Typical possibilities are Hk ¼ G�

kGk

leading to the Gauss–Newton algorithm and Hk = $2j(qk), which corresponds to the Newton method. In

oder to improve the convergence behavior, one uses in addition step-length rules or trust-region techniques.

For different algorithms and convergence theory see, e.g., [8,13,1].

Remark 1. Alternatively to building up the Hessian matrix as described above, one may compute only

matrix–vector products to be used within a iterative procedure for solving system (14) (e.g., the conjugate

gradient method). For the computation of the matrix–vector product of the Hessian matrix and a given

vector, the solution of one tangent and one dual equation is needed.

The optimization algorithm described above on the continuous level, is carried out for the discretized

problem (4) and (5). To this end, we introduce the discrete solution operator Sh:Q0 ! Vh and the discrete

reduced observation operator ch(qh) = C(Sh(qh)). Similar to the continuous case, the problem is reformu-

lated as an unconstrained optimization problem, i.e.,
Minimize jhðqhÞ ¼ Jðqh; ShðqhÞÞ:

The derivatives of jh are computed similar to Propositions 1 and 2.
3. A posteriori error estimation

In this section, we derive our a posteriori error estimator for the error with respect to the quantity of

interest. Our aim is to prove the following error representation:
Iðq; uÞ � Iðqh; uhÞ ¼ gþ R;
where g is the a posteriori error estimator, which can in principle be evaluated, and R is a remainder term

due to linearization. This error estimator is used within the following adaptive algorithm for error control

and mesh refinement: We start on a coarse mesh, solve the discretized optimization problem and evaluate

the error estimator. Thereafter, we refine the current mesh using local information obtained from the error

estimator, reducing the error with respect to the quantity of interest. This procedure is iterated until the

value of the error estimator is below a given tolerance, see [6] for a detailed description of this algorithm.
We define the Lagrange functional L by
Lðq; u; zÞ ¼ Jðq; uÞ þ ðf ; zÞ � aðq; uÞðzÞ: ð15Þ
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The first-order necessary condition for problem (1) and (2) is given by the stationarity of the LagrangianL.

Setting for abbreviation n = (q,u,z) it reads:
L0ðnÞðdnÞ ¼ 0 8dn 2 Q� V � V : ð16Þ

For the discretized problem, we have a similar first order necessary condition for nh = (qh,uh,zh):
L0ðnhÞðdnhÞ ¼ 0 8dnh 2 Q� V h � V h: ð17Þ

For the quantity of interest I, we introduce an additional functional M:
Mðn; vÞ ¼ Iðq; uÞ þL0ðnÞðvÞ;

with v = (p,v,y) 2 Q · V · V. Let now x = (n,v) be a stationary point of M. Then there holds:
Iðq; uÞ ¼ MðxÞ: ð18Þ

This equality, which also holds in similar way on the discrete level, is the starting point for our a posteriori

error analysis.

As in [5,6], we obtain the following error representation:

Proposition 3. Let x = (n,v) 2 X = (Q · V · V)2 be a stationary point of M, i.e.,
M0ðxÞðdxÞ ¼ 0 8dx 2 X : ð19Þ

Further let Xh = (Q · Vh · Vh)

2 � X be a subspace and xh = (nh,vh) 2 Xh be the corresponding Galerkin solu-

tion satisfying
M0ðxhÞðdxhÞ ¼ 0 8dxh 2 Xh: ð20Þ

Then, there holds the following error representation:
Iðq; uÞ � Iðqh; uhÞ ¼ 1
2
M0ðxhÞðx� ~xhÞ þ R; ð21Þ
where ~xh 2 Xh is arbitrary and the remainder term R is given by
R ¼ 1

2

Z 1

0

M000ðxh þ seÞðe; e; eÞsðs� 1Þ ds; ð22Þ
with e = x � xh.

Proof. The proof is given in Appendix A. h

For application of this result, the solution xh = (nh, vh) of (20) is needed. We note, that nh = (qh, uh, zh) is

the already computed solution of the first order optimality condition (17). It remains to compute the set of

auxiliary variables vh = (ph, vh, yh). At first glance, it seems as this might lead to huge additional computa-
tions. However, this can be avoided exploiting the special structure of the optimality system. In the next

proposition, we describe the computation of v = (p, v, y) on the continuous level (for clarity of notation).

The corresponding discrete set vh is obtained in the same way.

Proposition 4. Let n = (q, u, z) be a stationary point of L defined in (15). Let moreover, fwjg16j6nQ be the set

of tangent solutions (10) and H = $2j(q) be the reduced Hessian. Then the auxiliary solution v = (v, y, p) is

given by
Hp ¼ g; ð23Þ
where the components of g are:
gj ¼ �I 0qðq; uÞðejÞ � I 0uðq; uÞðwjÞ;
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v ¼
XnQ
j¼1

wjpj; ð24Þ
and y 2 V is determined by
a0uðq; uÞð/; yÞ ¼ hC0ðuÞðvÞ;C0ðuÞð/ÞiZ � hC00ðuÞð/; vÞ;RLSðuÞiZ � a00uuðq; uÞð/; v; zÞ
� a00uqðq; uÞð/; p; zÞ þ I 0uðq; uÞð/Þ 8/ 2 V : ð25Þ
Proof. The proof is given in Appendix A. h

From Propositions 3 and 4, we obtain the following result:

Theorem 1. Let n = (q, u, z) be a stationary point of the Lagrangian L defined in (15) and nh = (qh, uh, zh) be

the corresponding discrete solution. Let moreover, v = (v, p, y) be defined as in Proposition 4 and vh = (vh, ph,

yh) be the corresponding discrete set of auxiliary variables. Then there holds:
Iðq; uÞ � Iðqh; uhÞ ¼ 1
2
fquðnhÞðy � ~yhÞ þ qzðnhÞðv� ~vhÞg ð26Þ
þ 1

2
fqvðxhÞðz� ~zhÞ þ qyðxhÞðu� ~uhÞg þ R; ð27Þ
where ~yh;~vh;~zh; ~uh 2 V h are arbitrary. The residual functionals are given by
quðnhÞð/Þ :¼ f ð/Þ � aðqh; uhÞð/Þ;

qzðnhÞð/Þ :¼ �hC0ðuhÞð/Þ;RLSðuhÞiZ � a0uðqh; uhÞð/; zhÞ;

qvðxhÞð/Þ :¼ �a0qðqh; uhÞðph;/Þ � a0uðqh; uhÞðvh;/Þ;

qyðxhÞð/Þ :¼ I 0ðqh; uhÞð/Þ þ hC0ðuhÞðvhÞ;C0ðuhÞð/ÞiZ � hC00ðuhÞð/; vhÞ;RLSðuhÞiZ

� a00uuðqh; uhÞð/; vh; zhÞ � a00uqðqh; uhÞð/; ph; zhÞ � a0uðqh; uhÞð/; yhÞ

ð28Þ
and R is a cubic remainder term due to linearization, see Proposition 3.

Proof. The proof is given in Appendix A. h

Remark 2. For the computation of the discrete set of auxiliary variables vh = (ph, vh, yh), we use the rep-

resentations from Proposition 4, which are immediately translated to the discrete level.

In practice, one would solve the discrete analogon of Eq. (23) with the Hessian matrix computed in the

last step of the optimization loop. However, this may introduce an additional remainder term (linearization

error) depending on the iteration error.

Remark 3. For practical evaluation of the error estimator, terms like u� ~uh have to be approximated.

Since ~uh is arbitrary, this term corresponds to a local interpolation error. In our numerical example, we
use interpolation of the computed bilinear finite element solution yh on the space of biquadratic finite

elements on patches of cells, see [4] for details of this procedure. However, other reasonable procedures

are available, see, e.g., [7].

If the Hessian matrix from the last step is used, as discussed in Remark 2, then the main computa-

tional cost for the a posteriori error estimator described above is the solution of one auxiliary Eq.

(25). However, since one step of the optimization loop requires solution of the state (nonlinear) and

of several (linear) tangent equations, the additional work for the a posteriori error estimator is relatively

low.
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4. Sensitivity analysis

In this section, we develop first-order sensitivity analysis for the quantity of interest. Our aim is to inves-

tigate the influence of perturbations in the measurements �C on the quantity of interest I(q, u). This will be

done using similar techniques as in Section 3. Moreover, we will show, that the quantities computed for a
posteriori error estimation may be directly used for our sensitivity analysis.

Let q 2 Q be a solution of the problem (8). Then, the Hessian matrix $2j(q) of the reduced cost functional

is positive semidefinite due to the second-order necessary optimality condition. Throughout we assume the

Hessian $2j(q) to be (strictly) positive definite, which corresponds to the standard second order sufficient

optimality condition. Such a solution is called stable.

For addressing the question of the influence of the perturbations in the measurements on the solution of

the problem, we have to ensure the existence of the solution for the perturbed problem. This is done in the

following proposition.

Proposition 5. Let q be a stable solution of the problem (8) for the measurement vector �C. Then there exists a

neighborhood Z0 � Z of �C and a continuously differentiable function p: Z0 ! Q, which maps a given

measurement vector in Z0 to a stable solution of the corresponding problem.

Proof. The proof is given in Appendix A. h

Without loss of generality, we assume, that p(Z0) � Q0. For a given measurement vector �C, the state var-
iable at the optimum is given by Sðpð�CÞÞ, where S is the solution operator defined in (6). This allows us to
introduce the reduced quantity of interest bi : Z0 ! R as a function of measurements:
bið�CÞ ¼ IðSðpð�CÞÞ; pð�CÞÞ:

Next we define the relative condition numbers jl describing the amplification of relative errors, uniquely

determined by the following formula:
bið�C þ d�CÞ �bið�CÞbiðqÞ ¼
XnZ
l¼1

jl
d�Cl

�Cl
þOðkd�Ck2ZÞ: ð29Þ
Here, we have assumed, that biðqÞ 6¼ 0 and �Cl 6¼ 0; l ¼ 1; 2; . . . ; nZ . Otherwise, this formula can be given by

means of absolute perturbations.

In the following theorem, we propose an efficient way for the computation of jl. Again, we make use of

the fundamental equality (18).

Theorem 2. Let q be a stable solution of Problem (8) for the measurement vector �C. Moreover let x = (q, u, z,

p, v, y) be a stationary point of the LagrangianM. Then, for a small perturbation d�C (29) holds and the relative

condition numbers jl are given by
jl ¼ �C0
lðuÞðvÞ

�Cl

Iðq; uÞ ; l ¼ 1; 2; . . . ; nZ :
Proof. The proof is given in Appendix A. h

Due to the above theorem, it turns out that the computation of the relative condition numbers jl is based
on the same auxiliary solution (p, v, y) as the a posteriori error estimation in the previous section. There-

fore, the jl can be computed with little additional computational effort.

Remark 4. The relative condition numbers jl allow also the following representation:
jl ¼ �ðGpÞl
�Cl

Iðq; uÞ ; l ¼ 1; 2; . . . ; nZ ;
where G is the Jacobian matrix of the reduced observation operator at the solution q.
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The relative condition numbers jl describe the relative importance of the individual measurements for

the determination of the quantity of interest. They may be used to assess the accuracy of the quantity of

interest due to measurement errors. Moreover, these numbers give information for the design of new

experiments.

Remark 5. On the discrete level similar considerations can be done, which leads to discrete relative

condition numbers jh,l given by
jh;l ¼ �C0
lðuhÞðvhÞ

�Cl

Iðqh; uhÞ
; l ¼ 1; 2; . . . ; nZ :
Remark 6. The extension of this concept to a general parameter-dependent optimal control problem is

straightforward. Let problem (1) and (2) depend on a perturbation parameter r. Then, due to the fact that

x is a stationary point of M there holds:
d

dr
bi ¼ o

or
MðxÞ:
This gives a possibility to compute the corresponding relative condition numbers.
5. Numerical example

In this section, we discuss numerical results for a model flow problem. We start with a description of our

model configuration. Thereafter, we shortly describe the finite element discretization of the Navier–Stokes

equations used in the presented computations. We show some numerical results concerning mesh refine-
ment and numerical sensitivity analysis.
5.1. Configuration of the model problem

A typical difficulty in CFD is the prescription of in- and outflow boundary conditions. We consider a

systems of pipes X, see Fig. 1, with a flow described by the Navier–Stokes equations, where the inflow

and outflow boundary conditions are unknown. The circular hole in the lower branch represents the

cross-section of a cylinder. The aim of the computation is the accurate prediction of the drag-coefficient
of this cylinder.
Fig. 1. Configuration of the system of pipes with measurement points marked crosses.
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In order to embed this problem in our general setting, we parametrize the unknown boundary condition

and obtain the following system of parameter-dependent state equations for the pressure p and velocity v:
� mDvþ v � rvþrp ¼ f in X;

r � v ¼ 0 in X;

v ¼ 0 on C0;

m
ov
on

� pn ¼ q1n on C1;

m
ov
on

� pn ¼ q2n on C2;

m
ov
on

� pn ¼ 0 on C3:

ð30Þ
The unknown parameter q in the boundary conditions is searched for in the parameter space Q ¼ R2 and

n denotes the outward unit normal vector to the boundary. This parameterization can be interpreted as fol-

lows: The parameters q1 and q2 describe the pressure difference between C1 and C3, and between C2 and C3

respectively, cf. Heywood et al. [10].

The solution of the state equation for the exact parameters q = (0.03, 0.029) is shown in Fig. 2.

We assume the measurements �C 2 Z ¼ R4 to be given by point values of the velocity at four different

point marked by crosses in Fig. 1, i.e., the components of the observation operator are given by
CiðuÞ ¼ vðniÞ; i ¼ 1; . . . ; 4: ð31Þ

The values of �Cl, which are used for the identification of the parameter q, are taken from the solution of the

state equation for exact parameters, computed on a very fine mesh.

However, in this application, the values of the parameters do not describe the quantity of physical inter-

est. These parameters are only used in order to deal with the problem of incorporating boundary condi-
tions. The quantity we wish to compute is the drag-coefficient on the cylinder CA.

Remark 7. The described problem does not fulfill the assumption that the observation operator C is

bounded on the Hilbert space V, if we use for V the standard Sobolev spaces for velocities and pressure,

V = H1(X)2 · L2(X) (with standard modifications to incorporate Dirichlet data). Indeed, the RHS of the
adjoint equation (13) is a weighted sum of Dirac measures, and therefore, its solution has the same

singularities as the fundamental solution of the Stokes operator [11]. One possibility to obtain a well-posed

formulation uses the Banach spaces V = W1,p(X)2 · Lp(X) for u and V 0 = W1,p0(X)2 · Lp0(X) for the
Fig. 2. Solution of the state equation (horizontal velocity) for the exact parameters q = (0.03, 0.029).
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Lagrange multiplier z, with p > d and 1
p þ 1

p0 ¼ 1. The finite element formulation remains unchanged. The

developed theory for a posterior error estimation can be easily modified accordingly. The a priori error

analysis of an elliptic parameter identification problems with pointwise measurements can be found in [14].

This quantity of physical interest is given by the functional I:
IðuÞ ¼ c0

Z
CA

n � r � d ds; ð32Þ
where d = (1,0) is a chosen direction, c0 is a given constant, and r denotes the stress tensor given as usual by
r ¼ m
2
ðrvþ ðrvÞTÞ � pI :
5.2. Discretization of the Navier–Stokes equations

The starting point for any finite element discretization of the Navier–Stokes equation (30) is the standard

variational formulation. The space of test function for the velocities is
Fig. 3. Meshes generated by the adaptive algorithm with 746, 2170, 5094 and 11,068 nodes.
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H ¼ fw 2 H 1ðXÞ2jw ¼ 0 on C0g:
We set V = H · L2(X) and the form a : Q� V � V ! R is defined by
aðq; uÞð/Þ ¼ mðrv;rwÞ þ ðv � rv;wÞ � ðp;r � wÞ þ ðr � v; nÞ � ðq1n;wÞC1
� ðq2n;wÞC2

; ð33Þ
where / = (w, n) 2 V denotes the test functions for velocity and pressure. The corresponding weak formu-

lation of the state equation reads: Find u = (v, p) 2 V such that
aðq; uÞð/Þ ¼ 0 8/ 2 V : ð34Þ

The state equation (34) is discretized using conforming finite elements on shape-regular quadrilateral
meshes Th. However, in order to ease local mesh refinement we allow a cell to have nodes, which lie on

midpoints of faces of neighboring cells. But at most one such hanging node is permitted for each face.

We use isoparametric bilinear finite elements for both pressure and velocities. We add further terms to

the semilinear form a (33) in order to obtain a stable formulation with respect to both the pressure-velocity

coupling and convection dominated flow. The discretization is described in detail in [2].

5.3. Computational results

The optimization problem is solved by the Gauss–Newton method with the initial guess q0 = (0, 0),

which corresponds to the state variable u = 0. The resulting nonlinear state equations are solved by Newton

method and the solution of the linear subproblems are computed using a multigrid algorithm on locally

refined meshes, see Becker and Braack [3]. With these ingredients, the total numerical cost for solution

on a given mesh behaves like O(N), where N is the number of nodes. All computations are done on the basis

of the package RoDoBo for treating optimization problems governed by partial differential equations and

the finite element toolkit Gascoigne3D.
Error in the quantity of interest I vs. number of mesh points for uniform mesh refinement and local refinement resulting from

posteriori error estimator.



Table 1

Relative condition numbers for point measurements on sequence of locally refined meshes

N j1 j2 j3 j4

300 6.778E � 2 �1.640E � 2 5.032E � 1 5.110E � 1

746 6.920E � 2 �1.582E � 2 5.264E � 1 5.329E � 1

2170 6.908E � 2 �1.638E � 2 5.322E � 1 5.404E � 1

11,068 6.931E � 2 �1.661E � 2 5.346E � 1 5.429E � 1

Table 2

Comparison of the computed and predicted relative error in the quantity of interest for different levels of measurement errors

d�C1
�C1

� 100% dI
I � 100% j1

d�C1
�C1

� 100%
10 0.6904 0.6894

20 1.3824 1.3788

50 3.4682 3.4470

d�C2
�C2

� 100% j2
d�C2
�C2

� 100%
10 �0.1657 �0.1657

20 �0.3315 �0.3314

50 �0.8288 �0.8285

d�C3
�C3

� 100% j3
d�C3
�C3

� 100%
10 5.376 5.336

20 10.831 10.672

50 27.724 26.680

d�C4
�C4

� 100% j4
d�C4
�C4

� 100%
10 5.460 5.415

20 11.007 10.830

50 28.185 27.075
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Application of the a posteriori error estimator for the quantity of interest (32) leads to the sequence of

locally refined meshes shown Fig. 3. Obviously, there is strong local mesh refinement at the points of mea-

surement and around the cylinder where the quantity of interest is defined. Note the different strength of

refinement at the points ni. They are explained by the automatic weighting built in the a posteriori error
estimator.

Next we investigate the quality of this sequence of meshes generated by our a posteriori error estimator.

In Fig. 4, we show the corresponding error in the quantity of interest (32) compared with the errors ob-

tained by uniform mesh refinement. It turns out, that the refinement strategy based on the error estimator

for the quantity of interest leads to very efficient meshes.

We compute the relative condition numbers jl for the four points measurement on the above sequence of

locally refined meshes. The results are listed in Table 1. The measurements at n3 and n4 clearly have more

influence on I than the others.
It turns out that a perturbation of the measurement �C1 of 10% would lead only to a perturbation of

about 0.69% in the quantity of interest. However, a 10% perturbation of the measurement �C4 introduces

an error in the quantity of interest of about 5.4%.

Finally, we investigate the quality of jl for the prediction in the relative change of I, i.e., we check the

validity of (29). In Table 2, we show the relative error dI/I in the quantity of interest for different error

levels d�Cl=�Cl in the measurements. In order to do this comparison, since dI ¼ bið�C þ d�CÞ �bið�CÞ, the solu-
tion corresponding to �C þ d�C is computed in addition. The quality of the prediction based on jl is very
satisfactory.
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Appendix A. In this section, we give the proofs of the propositions and theorems formulated above.

Proof of Proposition 1. Let u = S(q) be a solution of the state equation (1). Taking the derivative of Eq. (6)

with respect to q in the direction dq, we obtain
a0uðq; uÞðdu;/Þ þ a0qðq; uÞðdq;/Þ ¼ 0 8/ 2 V ; ðA:1Þ
where du = S 0(q)(dq). Moreover, there holds:
c0ðqÞðdqÞ ¼ C0ðuÞðduÞ;

and we complete the proof by setting dq = ej. h

Proof of Proposition 2. Let u = S(q) be a solution of the state equation (1). Using the Lagrange functional

L defined in (15) we obtain:
jðqÞ ¼ Jðq; uÞ ¼ Lðq; u; zÞ

for arbitrary z 2 V. Taking the derivative with respect to q in the direction dq, we obtain:
j0ðqÞðdqÞ ¼ L0
uðq; u; zÞðduÞ þL0

qðq; u; zÞðdqÞ; ðA:2Þ
where du = S 0(q)(dq). Let now z 2 V be a solution of the adjoint equation (13), which corresponds to the

condition:
L0
uðq; u; zÞð/Þ ¼ 0 8/ 2 V : ðA:3Þ
We take the derivative of (A.2) with respect to q in the direction sq and obtain:
j00ðqÞðdq; sqÞ ¼ L0
uðq; u; zÞðd

2uÞ þL00
uuðq; u; zÞðdu; suÞ þL00

uqðq; u; zÞðdu; sqÞ þL00
uzðq; u; zÞðdu; szÞ

þL00
quðq; u; zÞðdq; suÞ þL00

qqðq; u; zÞðdq; sqÞ þL00
qzðq; u; zÞðdq; szÞ;
where d2u = S00(q)(dq,sq), su = S 0(q)(sq) and sz 2 V is the derivatives of z with respect to q in the direction

sq. The first term vanishes due to (A.3) and moreover there holds:
L00
uzðq; u; zÞðdu; szÞ þL00

qzðq; u; zÞðdq; szÞ ¼ a0uðq; uÞðdu; szÞ þ a0qðq; uÞðdq; szÞ ¼ 0;
due to (A.1). We complete the proof by setting dq = ej,sq = ek and calculating the second derivatives of

L. h

Proof of Proposition 3. We note, that n = (q, u, z) is a stationary point of L, i.e.
L0ðnÞðdnÞ ¼ 0 8dn 2 Q� V � V ðA:4Þ

and nh is the corresponding Galerkin solution
L0ðnhÞðdnhÞ ¼ 0 8dnh 2 Q� V h � V h: ðA:5Þ

Therefore, we obtain:
Iðq; uÞ � Iðqh; uhÞ ¼ MðxÞ �MðxhÞ: ðA:6Þ
We rewrite the RHS of (A.6) as follows:
MðxÞ �MðxhÞ ¼
Z 1

0

M0ðxh þ seÞðeÞ ds; ðA:7Þ
approximate the integral by the trapezoidal rule and obtain:
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MðxÞ �MðxhÞ ¼
1

2
M0ðxÞðeÞ þ 1

2
M0ðxhÞðeÞ þ R; ðA:8Þ
where the remainder term R is given by
R ¼ 1

2

Z 1

0

M000ðxh þ seÞðe; e; eÞsðs� 1Þ ds:
The term M0ðxÞðeÞ vanishes, and due to Galerkin orthogonality the term M0ðxhÞðeÞ can be replaced by
M0ðxhÞðx� ~xhÞ with ~xh 2 Xh arbitrarily chosen. This completes the proof. h

Proof of Proposition 4. We note, that n = (q,u,z) is a stationary point of L. Therefore, there holds:
M0
vðn; vÞðdvÞ ¼ L0ðnÞðdvÞ ¼ 0:
It remains to show that M0
nðn; vÞ ¼ 0. Due to the definition of v (24) there holds:
M0
zðn; vÞð/Þ ¼ L00

uzðnÞðv;/Þ þL00
qzðnÞðp;/Þ ¼

XnQ

j¼1
a0uðq; uÞðwj;/Þ þ a0qðq; uÞðej;/Þ

� �
:

This sum vanishes because of the definition of wj (10). The equation for y (25) can be rewritten in the fol-

lowing form:
L00
zuðnÞðy;/Þ ¼ �I 0uðq; uÞð/Þ �L00

uuðnÞðv;/Þ �L00
quðnÞðp;/Þ 8/ 2 V ; ðA:9Þ
which is equivalent to M0
uðn; vÞ ¼ 0. Finally, we show, that the derivative M0

qðn; vÞ vanishes. There holds:
M0
qðn; vÞðdqÞ ¼ I 0qðq; uÞðdqÞ þL00

uqðnÞðv; dqÞ þL00
qqðnÞðp; dqÞ þL00

zqðnÞðy; dqÞ:
Using the representation of second derivatives of j(q) from Proposition 2 and setting dq = ej we have:
M0
qðn; vÞðejÞ ¼ hHp; ejiQ þ I 0qðq; uÞðejÞ �L00

zqðnÞðy; ejÞ �L00
uuðnÞðv;wjÞ �L00

quðnÞðp;wjÞ: ðA:10Þ
Due to the definition of wj and the Eq. (A.9) we obtain:
M0
qðn; vÞðejÞ ¼ hHp; ejiQ þ I 0qðq; uÞðejÞ þ I 0uðq; uÞðwjÞ:
We complete the proof using the definition of p (23). h

Proof of Proposition 5. The solution q of problem (8) is assumed to be stable. Therefore the symmetric

matrix $2j(q) is positive definite and consequently invertible. Due to the finite dimension of Q the inverse

of $2j(q) is bounded and the implicit function theorem can be applied to the optimality condition (9). This

completes the proof. h

Proof of Theorem 1. We apply Propositions 3 and 4. Due to the choice Qh = Q we may set
~xh ¼ ð~uh; q; zh;~vh; p; ~yhÞ. This completes the proof. h

Proof of Theorem 2. There holds:
îð�CÞ ¼ MðxÞ:
We take derivatives in respect to �C and obtain:
î
0ð�CÞðd�CÞ ¼ M0

�CðxÞðd�CÞ þM0
xðdxÞ;
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where dx is the derivative of x with respect to �C in the direction d�C. Due to the fact that x is a stationary

point of M there holds:
î
0ð�CÞðd�CÞ ¼ M0

�CðxÞðd�CÞ ¼ �hC0
lðuÞðvÞ; d�CiZ :
This completes the proof. h
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